IxTeen

COVERVIEW

Application Overview and Model Development
Worksheets

User Interface

Procedures

Re-solve Options

Summary

Extensions

cASE STuDY 16 M Kruskal's Algorithm 2

CS16.1

CS16.1.1

Application Overview and Model Development

A spanning tree is a connected acyclic sub-graph that spans all of the nodes in a graph. A
minimum spanning tree is a spanning tree with the minimum total cost among all spanning
trees. We consider the cost of a spanning tree is the sum of the cost of all arcs in the
spanning tree. This case study allows the user to specify a network and animate Kruskal's
Algorithm to identify a minimum spanning tree.

Model Definition and Assumptions

Kruskal's Algorithm is a popular algorithm to determine a minimum spanning tree. This
algorithm constructs a spanning tree by adding one arc at a time. The algorithm first sorts
all of the arcs in the network in ascending order of their arc costs. Then, it examines each
arc in this order one by one and selects it if adding it to the already selected arcs does not
create a cycle. When all arcs have been examined, then the selected arcs define a
minimum spanning tree.

The intuition behind this algorithm is that if there is an arc cost Cij >Cy for some non-tree

arc (k, I) and some tree arc (i, j) contained, adding arc (k, I) to the tree in place of arc (i, j)
gives us a spanning tree with a lower cost. The correctness of Kruskal's algorithm follows

from the fact that we discarded each nontree arc (k, 1) with respect to T" at some stage
because it created a cycle with the arcs already in LIST. But observe that the cost of arc
(k, 1) is greater than or equal to the cost of every arc in that cycle because we examined

the arcs in the nondecreasing order of their costs. Therefore, the spanning tree T
satisfies the path optimality conditions and so it is an optimal tree.

We can illustrate Kruskal's algorithm on a small numerical example. Consider the network
shown below. Sorted in the order of their costs, the arcs are (2, 4), (3, 5), (3, 4), (2, 3), (4,
5), (2, 1), and (3, 1). In the first three iterations, the algorithm adds the arcs (2, 4), (3, 5)
and (3, 4) to LIST. In the next two iterations, the algorithm examines arcs (2, 3) and (4, 5)
and discards them because the addition of each arc to LIST creates a cycle. Then, the
algorithm adds arc (2, 1) to LIST and terminates. The last figure below shows the
minimum spanning tree.

30

cASE STuDY 16 M Kruskal's Algorithm

CS16.1.2

35

40

(b)

10

30

15

©)

®

We assume that the user creates their network and tells us the number of nodes and arcs
they have created. We also ask the user to complete a table listing all of the arcs in the
network, the nodes they connect, and their arc cost. We use this table to sort the arcs in
ascending order of their arc costs. We can then use the node pairs for each listed arc to
determine whether or not a cycle would be created if an arc was added to the tree.

For more information about Kruskal's algorithm, please refer to the book Network Flows:
Theory, Algorithm, and Applications by Ahuja, Magnanti, and Orlin.

Input

The input for this application is primarily the network that the user creates.
u Number of nodes and arcs in the network

" Node pairs for each arc

u Arc costs

cASE STuDY 16 M Kruskal's Algorithm 4

CS16.1.3

Output

The output for this application is the minimum spanning tree.

u Which arcs are in and out of the minimum spanning tree.
u The total spanning tree cost.

Worksheets

We use three worksheets in this application: the welcome sheet, an example sheet, and
the network sheet. The welcome sheet has the title and description of the application as
well as an image (see Figure CS16.1). There are two buttons on this sheet: “Run Demo”
and “Start Program”. Both buttons will bring the user to the network sheet.

©2004 Hanna, Ahuja, Winston

Animating Kruskal Algorithm
for Minimum Spanning Trees

A minimum spanning tree is a spanning tree with the
minimum total cost of among all spanning trees
where the cost of a spanning tree is the sum of the
cost of all arcs in the spanning tree).

Kruskal's Algorithm is a popular algorithm to
determine a minimum spanning tree and constructs it
by adding one arc at a time. The algorithm first sorts
all arcs in the network in the d ing order of
their arc costs. Then, it examins each arc in this order
one by one and select it if adding it to the already
selected arcs does not create a cycle. When all arcs
have been examined, then the selected arcs define a
minimum spannning tree.

This case study allows the user to specify the network
and animate Kruskal's Algorithm to identify a
minimum spanning tree. The user can also apply the
algorithm on a demo example.

For more information about Kruskal's algorithm, please refer
to the book "Network Flows: Theory, Algorithm, and
Applications” by Ahuja, Magnanti, and Orlin.

|| Run Demo I H Start Program I

Figure CS16.1 The welcome sheet.

The network sheet is the main sheet of the application (see Figure CS16.2). Detailed
directions are given to the user at the top of this sheet on how to create their network and
how to fill in the table with arc information. The user begins by creating their network. They
can copy and paste the node and arc images to create the network in the area above the
table. They can also copy and paste the text box to label their arcs with the arc costs. The
user must also hame each arc using Excel's name window. This visual information is for
the animation of Kruskal’s algorithm.

When the user is done creating the network, they will press the “Create Table” button.
This button will then prompt them with a user form to ask for the number of nodes and
arcs in the network they have just created. A table will then be drawn on the sheet for the
user to provide the arc information (see Figure CS16.3). This information includes the arc
number, node pair that the arc connects, and arc cost. The last column in the table will be
used by the application to display to the user which arcs are in and out of the final

CASE STUDY 16 M Kruskal's Algorithm 5

minimum spanning tree. When the user has completed filling this arc table, they can press
the “Solve” button to begin the animation of Kruskal's algorithm.

Create your network and find the minimum spanning tree.
(If you are running the demo, you may ignere these instructions.)

1. Copy and paste the node and arc shapes on the right of this box to create your network.

2. Define a NAME for each arc using the Name Window in the top left cormer of your screen.

The arc names should be defined as "Arc1”, Arc2”, efc.

3. After naming each arc, Iabel arcs by their arc costs by copying and pasting the text box provided.

4. Click Create Table and fill in all arcinformation
*** Note that you can force an arc to be in the tree by writing "Yes” in the "In Tree?” column. ***

5. Finally, click the Selve button to see the animation of Kruskal's Algerithm.
*** Note that you can resolve your current network by clicking the Reset button, changing the arc costs in the table, and then clicking
the Sovie button again

In Tree?
Arc Number From To Arc Cost ‘es/No) Total Cost

Figure CS16.2 The network sheet after creating the network.

Create your network and find the minimum spanning tree.
(If you are running the deme, you may ignore these instructions.)

1. Copy and paste the node and arc =hapes on the right of this box to create your network.

2. Define a NAME for each arc using the Name Window in the top left corner of your screen.

The arc names should be defined as "Arc1”, Arc2”, etc.

3. After naming each arc, label arcs by their arc costs by copying and pasting the text box provided.

4. Click Create Table and fill in all arc information
% Note that you can force an arc to be in the tree by writing ™Yes" in the "In Tree?" column.

5. Finally, click the Solve button to 2ee the animation of Kruzkal's Algorithm.
*** Note that you can resolve your current network by clicking the Reset button, changing the arc costz in the table, and then
clicking

Figure CS16.3 The network sheet after creating the table.

CASE STUDY 16 M Kruskal's Algorithm 6

As the creation of the minimum spanning tree is being performed one arc at a time by
Kruskal's algorithm, the user can see which arcs are being evaluated and whether or not
the evaluated arc has been put in the tree or kept out. As each arc is evaluated a “Yes” or
“No” will be displayed in the arc table to show whether or not the arc is in the minimum
spanning tree.

In Figure CS16.4, we show an example network in the middle of the algorithm animation.
Here, the first five arcs have been evaluated: the first three are in the tree, the fourth is out
of the tree, and the fifth is in the tree. The sixth arc is currently being evaluated. Note that
the animation of the arc evaluations in the network corresponds to the order of the rows in
the arc table.

Lt =

Create your network and find the minimum spanning tree.
(If you are running the demo, you may ignore these instructions.)

1. Copy and paste the node and arc ghapes on the right of thiz box to create your network

2. Define a NAME for each arc using the Name Window in the top left corner of your zcreen.

The arc names should be defined as "Arc1”, Arc2”, ete.

3. After naming each arc, label arcs by their arc costs by copying and pasting the text box provided.

4. Click Create Table and fillin all arc information.
*# Note that you can force an arc to be in the tree by writing ™es" in the "In Tree?" column, **

5. Finally, click the Solve button to see the animation of Kruskal's Algorithm.
*# Note that you can rezolve your current network by clicking the Reset button, changing the arc costs in the table, and then
clicking

(¢)
el o

InTree?
Arc Number Arc Cost (YesiNo) Total Cost
Yes 16

Yes
Yes

Yes

Figure CS16.4 The network sheet during the animation.

The final minimum spanning tree for this example is shown in Figure CS16.5. Once the
algorithm animation is complete, the user can see which arcs are in and out of the
minimum spanning tree by viewing the colors of the arcs in the network and the last
column in the arc table. The total cost of the spanning tree is also displayed. This cost is
the sum of all arc costs of the arcs in the minimum spanning tree. The user can now press
“Reset” in order to change arc costs and re-solve, or they can exit the application by
pressing the “End” button.

CASE STUDY 16 M Kruskal's Algorithm

Lreate your network and 1ind the minimuim spanning tree.
(If wou are running the demo, you may ignore these instructions.)

1. Copy and paste the node and arc shapes on the right of this box to creste your network

2. Define & NAME for each arc using the Mame Window in the top left corner of your screen

The arc names should be defined as "Arc1”, Arc2, sto.

5. After naming sach arc, label arcs by their arc costs by copying and pasting the text box provided

. Click Create Table and fill in all arc information
=+ Note that you can force an arc to be inthe tree by writing "ves" in the "In Tree?" column. *+

5. Finally, click the Selve button o see the animation of Kruskal's Algorithm

= hote that you can resolve your current network by clicking the Reset button, changing the arc costs in the table, and then
clicking

[—— =

To Arc Cost {vesMNo) Total Cost
Yes 16|
Yes

Yes

Yes
Yes

Figure CS16.5 The network sheet with the final solution.

The example sheet is available to the user if they press the “See Example” button on the
network sheet. The example sheet has an example network and completed arc table (see
Figure CS16.6). This sheet is used to guide the user in creating their own network and
filling in their own arc table. The user can press the “Return to Network Sheet” button to
return to the network sheet. The data on this sheet is also used for running the demo of
the application.

Example Network

Figure CS16.6 The example sheet.

Summary

Welcome sheet Application description and “Start” button.
The main sheet in which the user creates their network,
Network sheet completes a table of arc information, and runs the algorithm
animation.

An example network and completed arc table are available to
Example sheet user for guidance; this information is also used to run the
demo.

cASE STuDY 16 M Kruskal's Algorithm 8

CS16.3

User Interface

Summary

For this application, we use navigational and functional buttons as well as one user form
for the user interface. On the welcome sheet, there are two buttons: “Run Demo” and
“Start Program”. Both buttons take the user to the network sheet, but if the “Run Demo”
button was pushed then the network will already be created. When the user presses the
“Create Table” button, the user form appears to prompt them for the number of nodes and
arcs in the network they have created (see Figure CS16.7). If the demo is run and the
network was already created for the user, then this form is not shown.

Input Form
Please specify the number of nodes and arcs in the
network.

Nodes 6 Arcs 7|
OK ‘ Cancel ‘

Figure CS16.7 The input form.

The remainder of the interface includes the functional buttons “Solve” and “Reset” as well
as the navigational buttons “See Example”, “Return to Network Sheet”, and “End”. Some
formatting is done to highlight the button which should be pressed at the necessary time.
This is another clarification tool incorporated in the user interface.

“Run Demo” and “Start Program” buttons on welcome sheet;
Navigational Buttons “See Example” and “End” buttons on the network sheet;
“Return to Network Sheet” on the example sheet.

. “Create Table”, “Solve”, and “Reset” buttons on the network
Functional Buttons

sheet.
User specifies number of nodes and arcs in the network they

Input user form have created.

Procedures

We will now outline the procedures for this application. We begin with the initial sub
procedures and variable definitions (see Figure CS16.8). The Main procedure, assigned to
the “Start Program” button, calls the ClearPrevious procedure and takes the user to the
network sheet. The Demo procedure, assigned to the “Run Demo” button, calls the
ClearPrevious procedure, takes the user to the network sheet, and copies the network
from the example sheet to the network sheet.

cASE STuDY 16 M Kruskal's Algorithm 9

Uption Base 1

Glebal MNodes A3 Integer, NRres As Integer, DrwOlbj RAa Cbject, _

StartCell As Range, i As Integer, j As Integer, k As Integer, Graph As Range, _
ArcNeme () As String, Tail() &s Integer, Head() As Integer, _

ArcCost() As Integer, Label() Zs Integer, TotalCost Zs Integer, Default As Boolean, _
LzkelHead A5 Integer, LebelTail As Integer

Subk MAEIN() 'this suk is called when the user clicks the START kutton
Call ClearPrevious

Worksheets ("Network") .Visikble = True
Worksheets ("Welcome") .Visikle = False
End Sub

Subk Demo() 'uses example datz to illustrate slgorithm
Call ClearPrevious

Worksheets ("Network") .Visikble = True
Worksheets ("Welcome") .Visikle = False

Default = True

Worksheets ("Example”) .Range ("B4:F14") .Copy

ActiveSheet.Peste Destination:=Worksheets("Network™).Range ("BLS")
End Sub

Figure CS16.8 Variable declarations, Main procedure and Demo procedure.

The ClearPrevious procedure clears previous data and initializes some variable values
(see Figure CS16.9). It also clears the formatting of the arc table and deletes the network
images. Some button formatting is also modified here.

Suk ClearPrevious() 'clears previous date
Applicetion.ScreenlUpdating = False
Set StartCell = Worksheets("Network") .Range ("BZ3")

'clear tekle dste and formetting

With Renge (StartCell.0ffset(l, 0), StartCell.0ffset (100, 5))
.ClearContents
-Borders(xlInsideHorizontal) .LineStyle = xlNone
-Borders(xlInsideVertical) .LineS5tyle = xlMone
.Interior.ColorIndex = xlNone

End With

RBange ("TotalCost™) .ClearContents

'elear grsph ares

Set Graph = Worksheets("WNetwork").Range ("B14™, StartCell.Offset(-2, 8))
Graph.Cut

LetiveSheet.Paste Destination:=Worksheets ("Deleted") .Range ("B3")

'highlight Creste Tekle button znd hide Solwve button
Worksheets ("Network™) .Rctivate
AetiveSheet . Shapes ("TakleButton™) .Select
Selection_ShapeRenge Fill _ForeColor_ SchemeColor = 43
LetiveSheet . Shapes ("EachButton") .Visikle = False

Application.ScreenlUpdating = True
Default = False
Bange ("A1") .Select

End Sub

Figure CS16.9 The ClearPrevious procedure.

When the user presses the “Create Table” button, the CreateTable procedure is called
(see Figure CS16.10). If the demo is being run, then the arc table is copied from the
example sheet and pasted in the network sheet. However, if the user has created their

cASE STuDY 16 M Kruskal's Algorithm 10

own network, then the input form will now be shown to receive the values for the number
of nodes and arcs in the network. The arc table is then formatted as well as some of the

buttons.
Sub Createlsblel() 'crestes src tsble

If Defzult Then
Worksheets("Example") _Eange ("BZ1:E2Z7") .Copy
ZetiveSheet . Paste Destination:=Worksheets("Network™) . Range ("B30")
HNNodes = &
HArcs = 7

Zlsze
InputForm. Show
For i = 1 To Hires

StartCell. . 0ffget(i, 0).Value =i

Next i

End If

With Range (StartCell.Qffset(l, 0), StartCell.Offset (Mircs, 4))
.Borders (xlInsideHorizontel) .Weight = x1Thin
-Borders(xlInsideVertical) .Weight = x1Thin

End With

AetiveSheet.Shapes ("TabkleButton”) .Select

Selection.ShepeRenge.Fill . ForeColor.SchemeColor = 22

LetiveSheet . Shapes ("EachButton™) .Visikle = True

Bange ("A1") .Select

End Sub

Figure CS16.10 The CreateTable procedure.

The procedures for the input form simply record the number of nodes and arcs (see Figure
CS16.11). Some error checking is also performed.

Sub emdCancel Click()

HWorksheets ("Welcome") .Visikle = True
HWorksheets ("Network"™) .Visikle = False
TUnload Me
End

End Sub

Subk cmdOE Clicki() 'from Input Form

Dim ctl &3 Control
For Each ctl In Me.Controls
If TypelName (ctl) = "TextBox" Then
If IsMumeric({ctl.Value) = False Or ctl.Value = "0" Then
MsgBox "Please £i11 in =21l wvalues."
ctl.S5etFocus
Exit Sub
End If
End If
Hext

HNodes = txtHumModes
Nires = txtHumbres

Tnload Me
End Sub

Figure CS16.11 The input form procedures.

When the “Solve” button is pressed, the Kruskal procedure is called (see Figure CS16.12).
This procedure implements and animates Kruskal's algorithm for finding the minimum
spanning tree. The arc table is first sorted in ascending order of the arc costs. Then arrays

cASE STuDY 16 M Kruskal's Algorithm 11

are populated with the arc names, tail nodes and head nodes (or node pairs), and arc
costs from the arc table. A labeling array is initialized; it will be used to check for cycles as
the spanning tree is created.

Sub Kruskali) 'implements Hruskal's algorithm
Belim ArvcMame (NAres), Tail (NArcs), Head(NArecs), ArcCostiNArcs), Lahel (NNodes)

Application. Screenlipdating = False

'sort arcs in ascending order of arc cost

Dange (StartCell.Offsec(l, 0), StartCell.O0ffset (HArecs, 4)).S5elect
Selection. 8ort Keyl:=3tartCell Offsec {0, 32), Orderl:=xlAscending
Bange ("A1")_ Belect

'create arrays from Arec Cost table

For k = 1 To Nircs

ArcName (k) = "Arc" & StartCell. Offset(k, 0).Valus
Tail (k) = StartCell.Offsetik, 1).Walue

Head(k) = StarcCell.Offsetik, Z).Value

ArcCost (k) = StartCell Offsetik, 3)_WValue
Hext k

'initialization

TotalCost = 0

For i = 1 To NNodes
Labelii) = i

Hext i

'find arcs forced in tree first
For kB = 1 To Nircs
If StartCell Offsetik, 4).Walue = "Yes" Or StartCell Offsetc(k, 4)_Value = "yes" _
Or StartCell.Offset(k, 4).Walue = "Y" Or StartCell_ Offsetik, 4).Valus = "y" Then
Call InTree(k)
Range (StartCell Offset(k, 0), StartCell.Offset{k, 3)).Interior.ColorIndex = 36
End Tf
Hext k

'hegin algorithm
For k = 1 To Nires
If (Label(Tailik!) <= Label(Headik)!) Then
Call InTreeik)
Elze
If StarcCell. Dffset(k, 4).Value <> "Tes" Then
Call OutTreesik)
End If
End If
Hext k
StarcCell_ Select
Activelheet . Shapesi"EachButton").Visible = False 'hide Solwe button
End gubl

Figure CS16.12 The Kruskal procedure.

The algorithm then simply checks the label array for each arc in its sorted order to
determine whether or not a cycle would be created if it were added to the spanning tree. If
no cycle would be created then it is added to the tree by calling the InTree function. If a
cycle would be created, then it cannot be put in the tree and the OutTree function is
called. We will discuss later why we check for arcs which are forced in the spanning tree
(see Section CS23.5).

The InTree function updates the label array used in the algorithm and then animates the
network (see Figure CS16.13). The animation changes the current arc format to dashed,
pauses using the Wait method, and then changes the color of the arc to show that it is in
the tree.

The OutTree function also animates the network (see Figure CS16.14). The animation
changes the current arc format to dashed, pauses using the Wait method, and then
changes the color of the arc to show that it is not in the tree.

cASE STuDY 16 M Kruskal's Algorithm

12

End

Functiocn InTree ({current)

"put 2n arc in the tree

TotalCost = TotalCost + ArcCost{current)
Range ("TotalCost"™) .Value = TotalCost

LabelHead = Lakel (Head(current))
LabelTail = Lakel (Tail {current))

For i = 1 To NModes

If Labeli{i) = LabelHead Then

Label{i) = LakelTail

End If
Hext i

'animate arcs

For Each Drwilbj In ActiveSheet . Drawinglbbjects

If Drwilb]j._MName = ArcMName (current) Then
Drwilk]j . ShapeRange . Line DashStyle = msolineSquareDot
Application.ScreenUpdating = True
Application _Wait (HNow({) + TimeWValue ("00:00:01"))
Drwilk] . ShapefRange . Line DashStyle = msolineSolid
Application.ScreenUpdating = False
Drwlk]j . ShapeRange . Line . ForeColor . SchemeColor = 13
StartCell Offset (current, 4) _Value = "Yes™
End If
Mext Drwilb]j
Function

Figure CS16.13 The InTree function.

End

Function CutTree (current)

'keep 2rc out of tree

For Each Drwlbj In ActiveSheet.Drawinglbjects
If Drwlbj.Name = ArcHeme (current)
Drwlk]j . ShapeRange .Line . DashStyle

Applicetion.ScreenlUpdating = True
Applicetion.Weit (Mow()

End If
Next Drwlbj
Function

= False

4) Value

Then

msoclineSquarelot

msolLineSquarelot

+ TimeValue ("00:00:01"™))
Application.ScreenlUpdating
Drwlk]j . ShapeRange .Line . DashStyle
Drwilkj . ShapeRange .Line . ForeColor . SchemeColor
S5tartCell .Offset (current,

o

Figure CS

16.14 The OutTree function.

The navigational procedures are used for the “End”, “Show Example” and “Return to
Network Sheet” buttons (see Figure CS16.15).

Sub

End

EndProgi)

HWorksheets ("WHelcome™)
Worksheets ("Hetwork™)
Sub

-Visible
-.Visible

True
False

Sub

End

ShowEx ()

HWorksheets ("Example™)
Worksheets ("Hetwork™)
Sub

-Visible
-.Visible

True
False

Sub

End

ShowNetw()
HWorksheets ("Network™)
HWorksheets ("Example™)
Sub

-Visible
-.Visible

Figure CS16.15 The Navigational procedures.

True
False

cASE STuDY 16 M Kruskal's Algorithm 13

&2

&

Summary

Main Calls ClearPrevious and takes user to network sheet.

Demo Calls ClearPrevious, takes user to network sheet, and copies
network from example sheet.

ClearPrevious Initializes variables and clears previous values and formatting.

Creates arc table, shows input form, and performs some

CreateTable -
formatting.

Receives values for number of nodes and arcs in the user’'s
Input form procedures

network.
Kruskal Implements and animates Kruskal's algorithm.
InTree function Updates label array and animates putting arc in tree.
OutTree function Animates keeping arc out of tree.
Navigational For “End”, “Show Example” and “Return to Network Sheet”
nrocedures buttons

Re-solve Options

There are two main re-solve options for this application. Both options require the user to
press the “Reset” button and then the “Solve” button on the network sheet. The “Reset”
button is assigned to the ResetCosts procedure (see Figure CS16.16). This procedure
clears the last column in the arc table which was filled by the algorithm. It also clears other
formatting on the arc table and the value in the total cost cell. The arc costs are re-
recorded and the network images are restored to their original formatting.

Zub ResetCostsi) 'called from Reset button

Application. ScreenlUpdating = Fal=se

'clear tree Tes/No walues from table

With PRange (StarcCell_ 0ffseti(l, 4], StartCell 0ffset{l, 24)_ Endi{xlDoum)}
-ClearContents
.Interior.ColorIndex = xlMNone

End With

'clear other formattirng

With PRange (StarcCell_ 0ffset(l, 0, StartCell_ 0ffset{l, 3).Endi{xlDoum))}
- Interior.ColorIndex = xlMNone

End With

'clear total cost
RBange ("TotalCost") _ClearContents

're—record arc costs in case any changes
For k¥ = 1 To MNircs

ArcCostik) = StartCell 0ffsetik, 2).Value
Hext k

'reset arc colors
For k¥ = 1 To MNircs
For Each Drwilbhj Imn ActivefSheeset DrawinglObjects
If Drwibj. Name = ArcHNamei{k)] Then

Drwilbhj. ShapePange . Line. ForeColor . SchemeColor = &4
Drwilbhj. ShapePange . Line_ Dashityle = msoLineSolid
End If
MNext Drwibj
Hext k
ActiwveSheet Zhapes("EachButton") VWisible = True 're—show Solwve button
Application. ScreenUpdating = True
RBange ("Al") _ ZSelect
Exd Sub|

Figure CS16.16 The ResetCosts procedure.

cASE STuDY 16 M Kruskal's Algorithm 14

After pressing the “Reset” button and before pressing the “Solve” button to re-run
Kruskal's algorithm, the user can use either or both of the two re-solve options. The first
option is for the user to modify the arc costs and see how it affects the minimum spanning
tree. That is, if some arc costs are changed, when the algorithm is implemented and the
arcs are sorted and cycles are checked, the resulting minimum spanning tree may differ
from the original result.

The second option is for the user to force some arcs to be in the spanning tree. That is,
suppose some constraints require a particular arc to be in the spanning tree regardless of
its arc cost and node pairs. This re-solve option uses part of the code in the Kruskal
procedure to check for these forced arcs before implementing the algorithm (see Figure
CS16.17). The user can force the arcs in the tree by typing “Yes” (or “yes” or “Y” or “y") in
any row in the last column of the arc table.

For k=1 To Nares
If StertCell.Offset(k, 4).Value = "Yes" Qr StartCell.0ffset(k, 4).Velue = "yes" _
Or StartCell.Offset(k, 4).Velue = "Y" Or StartCell.Offset(k, 4).Value = "y" Then
Cell InTree(k)
Range (StartCell Offset(k, 0), StartCell.Qffset(k, 3)).Interior.ColorIndex = 3&
End If
Next k
For k=1 To Nares
If (Lebel(Tail(k)) <¥ Label (Heed(k))) Then
Cell InTree(k)
Zlze
If StartCell Offset(k, 4).Value <» "Yes" Then
Call CutTree(k)
End If
End If
Next k
StartCell Select
Tnd Sub|

Figure CS16.17 Code to capture forced arcs from Kruskal procedure.

For example, in Figure CS16.18, a minimum spanning tree is shown after the “Solve”
button was pressed the first time; this is the original solution. As you can see, the arc with
cost 8 has not been included in the minimum spanning tree. However, we can force this
arc to be in the tree. To do so, we have typed “Yes” in the row for this arc in the last
column of the arc table. We did this after we pressed the “Reset” button and before we
press the “Solve” button again.

Once the “Solve” button is pressed this time, the Kruskal procedure will first identify this
arc as a forced arc and put in the tree. It will then continue implementing the algorithm
given that the label array has been updated for this first arc already. In Figure CS16.19,
you can now see that this arc, with cost 8, has been included in the minimum spanning
tree. The row for any arc forced in the tree is highlighted to inform the user that the
algorithm did indeed force this arc in the tree.

CASE STUDY 16 M Kruskal's Algorithm 15

Create your network and find the minimum spanning tree,
(If you are running the deme, you may ignore these instructions.)

1. Copy and paste the node and arc shapes on the right of this box to create your network

2. Define a NAME for each arc using the Name Window in the top left corner of your screen.

The arc names should be defined as "Arc1”, Arc2" etc

3. After naming each arc, label arce by their arc costs by copying and pasting the text box provided.

4. Click Create Table and fil in all arc information.
% Note that you can force an arc to be in the tree by writing ™Yes” in the "In Tree?” column.

5. Finally, click the Solve button to see the animation of Kruskal's Algorithm.
% Note that you can resolve your current network by clicking the Reset butten, changing the arc costs in the table, and then
clicking

InTree?
Arc Number {YesiNo)

Figure CS16.18 The user can enter “Yes” in the table to force arcs in the tree.

Lreate your netwaork and tind the minimum spanning tree,
(If vou are running the demo, you may ignore these instructions.)

1. Copy and paste the node and arc shapes on the right of this hox to create your netwark.

2. Define a MAME for each arc using the MName Window in the top left corner of your screen

The arc natmes should be defined as "Arc1”, Arc2", etc

3. Atter naming each arc, label arcs by their arc costs by copying and pasting the text box provided

4. Click Create Table and fillin all arc information
2 Note that you can force an arc to be in the tree by weriting "ves"inthe "In Tree?" column. ***

5. Finally, click the Solve hutton to see the animation of Kruskal's Algorithm.
2 Mote that you can resolve your current network by clicking the Reset button, changing the arc costs inthe table, and then
clicking

Total Cost

19

InTree?
) To Arc Cost {YesMNo)
Yes

Yes
Yes

Figure CS16.19 The new solution with the forced arc.

cASE STuDY 16 M Kruskal's Algorithm

=

4

&

Summary

“Reset” and “Solve”
buttons

Changing arc costs

Forcing arcs in tree

Summary

16

These buttons allow the user to user either or both of the re-
solve options.
The user can change arc costs and re-solve.

The user can force some arcs to be in the spanning tree and
then re-solve.

u This case study allows the user to specify a network and animate Kruskal's

Algorithm to identify a minimum spanning tree.

We use three worksheets in this application: the welcome sheet, an example
sheet, and the network sheet.

For this application, we use navigational and functional buttons as well as one
user form for the user interface.

There are several procedures for this application which implement and animate
Kruskal's algorithm.

The user can re-solve the application by using the “Reset” and “Solve” buttons on

the network sheet. They can change arc costs or force arcs to be in the spanning
tree.

Extensions

Allow user to also be able to change other network information before resolving.
For example, you should be able to record not only new arc costs, but also new
arcs and new nodes.

Design an alternative user interface for all of the options available to the user on
the network sheet.

Add a procedure which automatically draws the network after the user enters the
number of nodes and arcs.

Modify this application to implement and animate Prim’s algorithm for finding a
minimum spanning tree. (Refer to Network Flows: Theory, Algorithm, and
Applications by Ahuja, Magnanti, and Orlin.)
Modify this application to implement and animate Sollin’s algorithm for finding a
minimum spanning tree. (Refer to Network Flows: Theory, Algorithm, and
Applications by Ahuja, Magnanti, and Orlin.)

