[image: image1.wmf])

5

(

.

,...,

1

;

,...,

1

}

1

,

0

{

)

4

(

,

,...,

1

;

,...,

1

0

,

)

3

(

,

,...,

1

;

,...,

1

)

2

(

,

,...,

1

;

,...,

1

)

1

(

,

,...,

1

1

:

:

min

1

,

1

1

1

1

1

1

1

T

t

K

k

for

z

T

t

K

k

for

I

x

T

t

K

k

for

z

P

x

T

t

K

k

for

d

I

I

x

T

t

for

z

to

Subject

z

F

I

h

x

c

kt

kt

kt

kt

kt

kt

kt

kt

t

k

kt

K

k

kt

K

k

T

t

kt

kt

K

k

T

t

kt

kt

K

k

T

t

kt

kt

=

=

Î

=

=

³

=

=

£

=

=

=

-

+

=

£

+

+

-

=

=

=

=

=

=

=

å

å

å

å

å

å

å

Case Study 57 Board Game: Tic Tac Toe

[image: image2.jpg]nAxeq

un)

naxgq

nn)

TERMAL

iy

oeD

o

Board Game: Tic Tac Toe

Problem Description

The aim of this project is to build a simple board game called “Tic Tac Toe.” Developing this game will enhance students’ ability to program using Visual Basic for Excel. The game is played with two players or a player and a computer. The student should implement the algorithms described below to generate computer moves when the game is played between a player and the computer. Below we describe how to play the game.
The game is usually played in a 3 by 3 board. The players take turns in playing the game. In each move the player marks one of the slots/cells. The goal is to get three marks in one row, horizontally, vertically or diagonally. The first player to get three marks in one row wins the game. The total number of moves for this game is 9.

User Interface

1. Build the welcome form.

2. Build a form that includes the following items:

a. Build a 3 by 3 play board in an Excel spreadsheet. The slots/cells of the play board should be squared. A snapshot of the board is given below.

b. Insert a combo box to allow the player to pick a color for the board.

c. Insert a combo box that allows each player to pick a representing mark. For example, in the play board presented above, one of the players has chosen the cross and the other the circle.

d. Insert a combo box that allows the player to choose whether the game will be played between the player and the computer or between two players. Upon submission of this information, text boxes appear for the player(s) to type in the name(s). In the case that the player chose to play with the computer, a combo box appears that allows the player to choose the difficulty level of the game: beginner or advanced. For each level, we describe below algorithms that can be used by the computer to play the game.

e. Insert a combo box that allows the players to choose who will start the game.

f. Insert text boxes that present the following: the total number of moves for each player, the name of the player who should play next, and the total number of moves until the end of the game.

g. Display a message box that presents the name of the winner and the total number of moves. If the board is filled and no one has aligned three marks in a row, then the game is drawn.

h. Insert a command button that enables the player to choose whether to replay the game or close the program.

Design a logo for this project. Insert this logo in the forms created above. Pick a background color and a font color for the forms created. Include the following in the forms created: record navigation command buttons, record operations command buttons, and form operations command buttons as needed.

Reports

Report the following information about the games played so far: the names of the players, the name of the winner, and the total number of moves.

Algorithms

There are a number of algorithms available to decide about the moves of the computer (which you would program) in response to the moves of the player during this game. If implemented properly, it would be very difficult for the computer to loose. Below we present two heuristic approaches to automate the computer’s moves, one for the beginner level and the other for the advanced level.

Beginner Level Algorithm:

1. Check if there is a move that the computer can make so that there will be 3 marks in one row, horizontally, vertically or diagonally.

a. If so, fill in the relevant square.

b. Else, check for a move that will block a win for the other player and fill in the relevant square.

c. Else, fill in the square that lies on the row/column with the maximum number of cells free of marks.

Advanced Level Algorithm:

The “Tic-Tac-Toe” board game can easily be represented as a decision tree (see Figure 1). The tree for this game is very small; therefore, it is easy to make moves (add marks on the board) until you hit a board that ends the game, unlike games such as chess where the corresponding “game tree” is very big.

A board with no marks is used as the root node of the tree. Whenever it is the computer's turn, check each available move and assign the resulting board a score. The score indicates whether the board is in favor of the computer (a positive score), in favor of the player (a negative score), or neither (0). Each possible move is then added as a child to the root. The computer makes the move that takes the board from its current position to the selected branch of the tree.

The following is the minimax algorithm:
1. List all possible moves available to the computer.

2. List all the possible moves the player can make given that the computer made a move.

3. Find the maximum board value for each case, assuming that is the move the player will make.

4. Make the move that will give the smallest maximum for the player.

Figure 1. Decision Tree for the “Tic Tac Toe” Board Game.

 �
�

 �
�

X�
�

 �
�

 0�
�

 �
�

 �
�

 0�
�

X�
�

57

� EMBED Equation.3 ���

_1142440689.unknown

